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Abstract. Ternary Content-Addressable Memories (TCAMs) provide
a fast mechanism for IP lookups and a simple management for route
updates. The high power consumption problem can be resolved by pro-
viding a TCAM partitioning technique that selectively addresses smaller
portions of a TCAM. This paper proposes a 2-level TCAM architecture
using prefix comparison rule to partition the routing table into a number
of buckets of possibly equal sizes. The 2-level architecture results in a
2-step lookup process. The first step determines which bucket is used
to search the input IP. The second step only searches the IP in the de-
termined bucket from the first step. The prefix partitioning algorithm
provides an incremental update. Experiments show that the proposed
algorithm has lower power consumption than the existing TCAM parti-
tioning algorithms.

1 Introduction

Backbone routers have to forward millions of packets per second at each port.
The IP lookups of the routers becomes the most critical operation to reach the
capability of forwarding millions of packets per second. In [1], a large variety of
routing lookup algorithms were classified and their worst-case complexities of
lookup latency, update time, and storage usage were compared. However, these
schemes using DRAMs or SRAMs can hardly meet the wire speed requirements
needed for current terabit router design since they usually need many memory
access cycles to look for a matched routing entry.

TCAMs are fully associative memories that allow a ”don’t-care” state for
each memory cell, in addition to the states of 0 and 1. Each entry of a TCAM
consisting of multiple cells is long enough to store a prefix for IP lookups or a
rule for packet classification. TCAM is designed in such a way that all the entries
are looked up in parallel against the incoming IP address. Thus, a matched entry
if it exists can be found in a single TCAM access cycle. If multiple entries match
the IP address, the entry with lowest address (i.e., longest prefix) in TCAM is
typically returned as the result. Moreover, the update process in TCAMs is in
general very simple [5].
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There are two major disadvantages for TCAMs, the high cost-to-density ratio
and power consumption. TCAM designs from IDT and Netlogic have effectively
solved the issue of high cost-to-density ratio. The cost of their TCAM designs is
very competitive with other hardware alternatives.

The high power consumption comes from the fact that the hardware circuits
of all the entries in a TCAM are activated in parallel to perform the matching
operations. Therefore, TCAM vendors today provide entry selection mechanisms
to reduce power consumption by selecting fixed regions of TCAM called buckets
for matching process.

In this paper, we propose a prefix partitioning scheme that performs better
than subtree-split and postorder-split in most of the cases. The proposed scheme
is based on the prefix comparison mechanism by which we can compare two
prefixes of different lengths. Using the prefix comparison mechanism, we can
sort the original prefixes and divide them evenly into K groups by selecting
K − 1 pivot prefixes with some small number of duplicated pivot prefixes. We
will show by performance evaluation on real routing tables that the proposed
partitioning scheme performs better than subtree-split and postorder-split in
power consumption reduction.

The rest of the paper begins with the definition of IP lookup problem and
related works in section 2. Section 3 illustrates the basic ideas of the proposed
partitioning algorithms and the detailed design. The results of performance com-
parisons using real routing tables available on the Internet are presented in sec-
tion 4. Finally, a concluding remark is given in the last section.

2 Problem Definition and Related Works

A TCAM consists of a large number of multi-cell entries. Each cell of an entry in
a TCAM is a ternary bit which is implemented by a value bit and a netmask bit.
A cell is compared with the corresponding bit in the target IP. A cell match is
found if the netmask bit is 0 or the value bit is the same as the corresponding bit
in the target IP. A TCAM entry matches the target IP if all the cells match the
target IP. The TCAM is designed in such a way that when an IP is input, all the
TCAM entries are activated to compare against the input IP. Only the match
in the TCAM entry with the lowest address is returned as the final result. To
ensure the TCAM entry with the lowest address is the longest prefix match, the
prefixes in the TCAM must be stored in order of decreasing prefix length. The
prefix length ordering slows down the TCAM update process. Shah and Gupta
[5] have proposed efficient update schemes for TCAM updates.

In [4], Zane, et. al, took advantage of the entry selection mechanisms and
developed two sets of prefix partitioning schemes to reduce the number of prefixes
searched in an IP lookup. Their first partitioning scheme called bit selection
architecture combines simple glue logic with TCAM. The glue logic uses a simple
hashing function to select a set of input bits called hashing bits as an index to
the appropriate TCAM bucket. The bit selection schemes are not suitable for
real implementations because of the following drawbacks. The first drawback
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is that it only deals with prefixes of length 16-24. No better scheme to work
with the prefixes of length < 16 and > 24. The second drawback is that no
prefect hashing function can be obtained in advance and thus the worst-case
power consumption is still too high. In order to eliminates the drawbacks of bit
selection schemes, the authors proposed another set of schemes, the trie-based
partitioning schemes.

Their trie-based partitioning schemes use a two-level TCAM organization.
The first-level TCAM is responsible for matching the target IP and obtaining an
index of the second-level TCAM bucket. The main idea is to find a subtrie or a set
of subtries and put the prefixes in the subtrie(s) in a single TCAM bucket such
that all the buckets are balanced. Two different split algorithms were proposed.
They are subtree-split and postorder-split algorithms. Given a parameter b, the
subtree-split algorithm can partition the routing table into K buckets, where K
∈ [ �N/b�, �2N/b� ] and each bucket contains �b/2� to b prefixes. In addition, an
index TCAM of size K and an index SRAM are needed. The drawbacks of the
subtree-split algorithm are as follows. Usually, K is fixed in advance. There is no
simple and efficient method to estimate how big is b for obtaining the expected
K. Also, the numbers of prefixes stored in TCAM buckets are not balanced; the
worst-case difference between the numbers of prefixes in two TCAM buckets is
�b/2� . The worst is that the subtree-split algorithm may fail when K is fixed
and TCAM memory pressure to store all the prefixes is high. Another drawback
is that the subtree-split algorithm does not provide an incremental update when
a new prefix is going to be inserted into a full TCAM bucket. For this situation,
only re-partitioning is the solution. The postorder-split algorithm remedies most
of the drawbacks of the subtree-split algorithm. It partitions the routing table
into K buckets each containing exactly �N/K� prefixes, except possibly the last
bucket. However, the postorder-split algorithm comes at the cost of large index
TCAM, especially when K is large. The postorder-split algorithm can move the
prefixes in an overflowed TCAM bucket to a neighboring bucket. However, it
is not clear that both neighboring buckets of an overflowed bucket can be used
as the buffering space to hold overflowed prefixes. Also, when both neighboring
buckets of an overflowed bucket are full, no incremental update can be achieved.

Based on their performance evaluations in terms of power consumption re-
duction, subtree-split performs better than postorder-split when the number of
buckets grows beyond 64. On the contrary, postorder-split performs better than
subtree-split when the number of buckets is less than 64.

In this paper, we use the prefix comparison technique proposed in [6] to sort
the prefixes. With the sorted prefixes, we can easily partition the prefixes into K
groups by selecting K - 1 pivot prefixes. Thus, all the prefixes can be compared
in parallel with the target IP address to determine which group that this target
IP belongs to.

Before going on, we make the following assumptions used in the paper. Similar
to the assumption used in [4], we assume that an original TCAM can be divided
into K buckets. An additional control line is used to select which TCAM bucket
is only activated for searching the input IP. Also, we assume that the same prefix
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can be distributed over many buckets. When a prefix is to be deleted, we assume
that we can select a TCAM bucket or all the TCAM buckets from which the
prefix is deleted.

3 Proposed Partitioning Algorithms

It is known that if a list of data items can be sorted then they can be easily par-
titioned into groups such that all the data items in one group are smaller/larger
than all items in another group. Next, a list of pivot items that are the largest
or smallest items in all the groups can be selected as the first level data items.
As a result, the search process for a data is operated in two steps. The first step
searches the first level pivot list and determines which group the searched data
belongs to. The second step then searches the determined group for the data.
Before we can apply the same technique to reduce power consumption in TCAM,
we need a comparison mechanism to sort the prefixes in routing tables and parti-
tion them into groups. Comparing prefixes is not easy because the lengths of the
prefixes may be different. In [6], we have proposed a systematic method to com-
pare prefixes of various lengths. Based on the proposed comparison mechanism
for the prefixes of different lengths, the proposed prefix partitioning algorithm
can be developed.

In order to devise a new partitioning technique based on the prefix compar-
ison, we also need to consider the enclosure property among the prefixes since
shorter prefixes may cover more than one group. The enclosure prefixes must
be put into the groups that contain longer prefixes covered by them. Therefore,
we need to duplicate the enclosure prefixes and put them in both groups. In
summary, the problem of partitioning the prefixes into K groups becomes (1)
how to select the pivot prefixes to cut the tree evenly into groups, (2) which
enclosure prefixes are duplicated, and (3) which groups to put the duplicated
prefixes. Before describing the detailed design of the proposed algorithm, we give
the definition of prefix comparisons as follows.
Definition 1 of prefix comparison: The inequality 0 < * < 1 is used to compare
two prefixes in the ternary representation of prefixes.
Instead of sorting the prefixes in a routing table by a fast sorting algorithm such
as quick sort, we use the binary trie to complete the sort operation. The binary
trie will also be used for determining the enclosure prefixes. Given a routing
table, the binary trie is first constructed. Then we perform an inorder traversal
in the binary trie and obtain the sorted prefixes. Assume there are N prefixes in
the routing table and we want to partition them into K groups. We simply divide
the sorted prefixes evenly into K groups. Each group contains �N/K� prefixes.
We select the largest prefix in each group as the pivot, except the last group.
There are K − 1 pivot prefixes, pivot[i] for i=0 . . . K − 2.

Now we describe how to determine which enclosure prefixes should be dupli-
cated and inserted into which group. For a group i, we consider the largest and
smallest prefixes Li and Si. We first traverse the binary trie bottom-up from Li

to the root. If a valid enclosure prefix, Penc, that encloses Li is found and Penc
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> pivot[i] or Penc ≤ pivot[i−1], then Penc is duplicated and put into group i.
Secondly, similar traversal from Si to the root can be done. The two traversals
for Li of group i and Si+1 of group i+1 can be combined into one by performing
the traversal for the longest common ancestor of Li and Si+1. This is because
no valid prefix exists between Li and Si+1 and the longest common ancestor
of Li and Si+1 must locate between Li and Si+1. We call the above procedure
for duplicating enclosure prefixes as the group cut procedure. Theoretically, each
group cut generates at most W extra prefixes. We present the detailed algorithm
for the proposed prefix partition as follows.
Prefix-partition(K, RoutingTable)
{

Construct the binary trie (BinaryTrie) from the routing table (RoutingTable)
Inorder traverse BinaryTrie and store all valid prefixes

in array Plist in sorted order.
Select K − 1 prefixes, pivot[i] for i = 0 .. K − 2 such that

pivot[i] = Plist[i ∗ b − 1], where b= �N/K�.
For (i = 0; i < K − 1; i++) {

Put prefixes, Plist[i*b] to Plist[i*b + b − 1] in group i.
For each of the ancestor prefixes (P) of the longest common

ancestor of Plist[i*b + b − 1] and Plist[i*b + b] do
If P is not in group i then put P in group i.
If P is not in group i + 1 then put P in group i + 1.

}
Put prefixes Plist[K*b − b] to Plist[size(Plist) − 1] in group K − 1.

}

By using �N/K� to be the number of prefixes in each group, we may un-
derestimate the impact of duplications of enclosure prefixes. Therefore, in real
implementation, we can use a kind of greedy algorithm by increasing the size
of �N/K� to balance the number of prefixes in each TCAM bucket. However,
based on our experiments, the greedy algorithm produces no bigger difference.
Also in order to make insertion process simple, the pivot prefixes are selected in
such a way that they are disjoint with each other. The selected pivot prefixes are
restricted not to be that of length 32. This restriction can be fulfilled by selecting
a pivot prefix between groups i and i + 1 that is larger than the largest prefix
in group i and smaller than the smallest prefix in group i + 1. This restriction
for selecting a pivot prefix is for using 32 bits to represent a prefix and will be
explained later. Based on the above analysis, we have the following result.

Theorem 1: The size of each group created by the prefix partitioning algo-
rithm is at most �N/K� + W, where the size of the routing table is N and
maximum length of prefixes in the routing table is W.

The architecture of the proposed prefix partitioning algorithm is illustrated
in Figure 1. Each partitioned group of prefixes is in fact treated as a TCAM
bucket. The total power consumption for each lookup is equal to the power
consumed by the selected TCAM bucket and the first level circuitry. As shown
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Fig. 1. TCAM architecture for the proposed prefix partitioning algorithm.

in Figure 1, the binary search logic first lookups the pivot array and obtains the
TCAM bucket number from the associated index array. Then the TCAM bucket
number is input in data TCAM and only that TCAM bucket is looked up.

Route Update. The route update consists of two steps. The first step is
to determine if the inserted prefix needs to be duplicated and which groups
to insert. The second step is to avoid recomputed the prefix partition process
because re-partitioning involves excessive TCAM write operations.

Recall that the prefixes in the pivot array are disjoint and are in an increasing
order. When inserting a prefix P, we perform the following steps. First we use the
binary search to locate the position at which P is supposed to reside. Assume that
pivot[i−1] < P < pivot[i]. We consider two conditions. The first condition is when
P is disjoint with both pivot[i−1] and pivot[i] or P is enclosed by either pivot[i−1]
or pivot[i], but not both. The second condition is when prefix P encloses one or
more pivot prefixes. If the first condition is met, prefix P is inserted into group i
since no other group will be affected. If the second condition is met, we need to
search for a set of successive pivot prefixes that are enclosed by prefix P. Then
we duplicate prefix P and put a copy of P in each TCAM bucket that is enclosed
by P. The deletion of an old prefix requires only a delete command issued to all
the TCAM buckets to remove the prefix if it exists.

The TCAM partitioning algorithms proposed in [4] assumed that TCAM
buckets need to be re-partitioned each time any bucket overflows. Therefore, the
frequency of re-partitioning depends on two factors. One is the route addition or
deletion rate. The other factor is the prefix occupation pressure in each TCAM
bucket. As shown in [4], if we have a low prefix occupation pressure in any
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TCAM bucket, the number of times that a re-partitioning process is needed will
be very small and thus the updating impact will be negligible. In this section,
we shall propose an update scheme that avoids re-partitioning even when the
TCAM bucket to be inserted is full.

Assume a prefix P is supposed to be inserted in TCAM bucket i. We first
consider the case when TCAM bucket i is full and TCAM bucket i + 1 is not full.
Let Li and Mi be the largest and the second largest prefix in TCAM bucket i. We
select another pivot Qi such that Mi ≤ Qi < Li. Next, we move Li to group i + 1
and let pivot[i] = Qi. Similar operations can be performed when TCAM bucket
i − 1 is not full. Notice that the smallest bucket (bucket 0) or largest bucket
(bucket K) has only one neighboring bucket instead of two. Assume that Li and
Si are the largest and smallest prefixes in bucket i, respectively. By using S0

and LK as additional pivot prefixes, buckets 0 and K can have two neighboring
buckets and thus less chance to perform the routing table re-partitioning.

As stated in [4], there are occasional floods of up to a few thousand route
additions in one second in the real update router traces. Also, these route ad-
ditions are very close to each other in a subtrie of the binary trie built from
the routing table. These routes are often subsequently withdrawn. These floods
often cause a single bucket or even three consecutive buckets to repeatedly over-
flow. Therefore, we may need a better scheme to avoid repartitioning the routing
table even when buckets i − 1, i, and i + 1 are full. The proposed prefix update
algorithm is as follows. Assume the new routing prefixes need to be inserted in
bucket i. Firstly, we select a new pivot prefix Qi in bucket i such that is Mi ≤ Qi

< Li, where Li is the largest and Mi is the second largest in bucket i. Secondly
we select a non-full bucket j. The prefix Li is moved to bucket j. Bucket j can
be selected to be the one containing the smallest number of prefixes at the time
of insertion. Let Pi = pivot[i]. Thirdly, we assign pivot[i] = Qi and add Pi as
an extra pivot between pivot[i] and pivot[i + 1]. Notice that the pivot[j] for j
= i + 1 to K − 2 must be shifted to allocate an empty entry to put Pi. The
corresponding entry in index SRAM must also be allocated by shift operations
and set this index TCAM entry to point to bucket j.

32-bit prefix representation. The two most important operations needed
in the IP lookup are matching a prefix with a 32-bit IP address and comparing
two prefixes of various lengths. The matching operations have already been taken
care by the hardware logics in TCAM. The prefix comparison involves ternary
operations where 0, 1, and the don’t care bit (denoted as *) are checked. In [6],
we proposed a method to represent the prefixes in a binary format using 33 bits
in the context of IPv4. The method can be straightforwardly expanded to IPv6.
We formally define the binary representation of a prefix as follows.
Definition 2 of (n+1)-bit representation for the prefixes in an n-bit address space:
For a prefix of length i, bn−1bn−2bn−i*, where bj=0 or 1 for n − i > j≥0,
its binary representation is bn−1bn−2 . . . bn−i1an−i−1 . . . a0, where aj=0 for
j = 0 . . . n − i − 1.
Since current processors usually have 32-bit wide instructions. The 33-bit prefix
representation thus needs two 32-bit storages. A naive implementation of the
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comparison operations for the 33-bit representation can lead to inefficiency under
32-bit instructions. Two 32-bit binary comparison operations may be needed in
the worst case since only 32-bit arithmetic and logic operations are available in
current 32-bit processors. It also means that two 32-bit memory reads are needed
if the size of registers is 32 bits.

If there is no prefix of length 32, we can use only 32 bits by ignoring the
least significant bit that must always be zero. This is the case for computing
the pivot prefixes in the proposed prefix partition algorithm. Note that a pivot
is the common ancestor of two prefixes and thus has a length of at most 31.
Therefore, when we use 32 bits to represent a pivot prefix of length less than
32, the 33th bit of a pivot prefix must be zero. However, if we use 32 bits to
represent a prefix of length 32 (in fact, an IP address) the 33th bit of the prefix
is assumed to be one. Therefore, when we compare an IP with a pivot prefix
using 32-bit representation, equality means the IP is larger than the pivot pre-
fix. Therefore, the 32-bit representation for a 32-bit ternary prefix is sufficient.

Table 1: general information of the routing tables used in the paper.
Funet-40k Oix-80k Oix-120k Oix-150k

# of prefixes 41,709 89,088 120,635 159,930
Length distr. 8-30-32 6-32 8-32 8-32
Date 1997-10-30 2003-12-28 2002-12-01 2004-2-1

4 Performance Evaluations

In this section, we present the performance results for the subtree-split and
postorder-split algorithms [4] and the proposed T-bit expanded and prefix par-
titions. Table 1 shows the general information of the routing tables used in the
paper. Three routing tables are the snapshots of the routing table traces ob-
tained from University of Oregon Route Views Archive Project [oix]. The fourth
table, i.e., the smallest among the four routing tables, is obtained from the web
site provided by the authors of the LC trie [3]. For example, Funet-40k routing
table contains only prefixes of length 8 to 30 and 31. With these routing tables
of various sizes, we can obtain complete understanding on the performance when
applying different TCAM architectures. We take K, the total number of TCAM
buckets, as the input to the algorithms. The output will be the reduction in
power consumptions which is defined as the ratio of the total number of routing
table prefixes to the maximum number of prefixes searched in all TCAM buckets
for an IP lookup.

For subtree-split and postorder-split algorithms and the proposed prefix par-
tition, the maximum number of prefixes searched is the sum of the total number
of routing entries in the index TCAM or in the pivot engine and the number of
prefixes in the largest bucket in the data TCAM. As for the index SRAM and
associated SRAM with routing information, its power consumption is small and
can be ignored in the power consumption calculation.

The reductions in power consumption for four routing tables are shown in
Figure 2. The proposed prefix partition performs consistently better than sub-
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Fig. 2. Power consumption reduction for subtree-split, postorder-split, and
prefix-partition algorithms.
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tree split for all the routing tables with various sizes. When the number of
buckets K is less than 256, the proposed prefix partition has 33% to 91% more
power consumption reduction than subtree split. When K increases up to 1024,
the difference between the prefix partition and subtree split is minimal because
the size of index TCAM begins to dominate.

By carefully inspecting the results of the postorder split and the proposed
prefix partition, they both have the same characteristics that the reduction drops
when the number of buckets K becomes larger. This is because the size of index
TCAM dominates for postorder split and duplicated prefixes of shorter lengths
increases in each TCAM bucket for the proposed prefix partition. Their perfor-
mance stays very closely when K is less than 32. However, the power consumption
reduction of postorder split drops much more than that of the prefix partition
when K increases.

5 Conclusion

In this paper, we introduced a new partitioning architecture and algorithm to
reduce the TCAM power consumption. The prefix partition is shown to per-
form better than the existing subtree-split and postorder-split schemes. Prefix
partition scheme has the similar characteristics to the subtree-split in power
consumption reduction. However, prefix partitioning algorithm performs consis-
tently better than subtree-split. One major advantage of the prefix partitioning
algorithm is that it is capable of performing incremental updates.
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